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Equations are obtained for the temperature variation of each material 
and of the gas for heating and cooling of a fixed bed composed of two 
materials with different thermophysical properties. 

In the heating of materials  in shaft furnaces, roas t -  
ing of ferrous and nonferrous ores,  and in s imilar  
technical processes ,  heat is applied to a bed of solid 
particles,  consisting of a minimum of two materials  
possessing different thermophystcal  propert ies (mass 
heat capacity, density, etc.).  The well-known solu- 
tion for the Schumann problem [1] applies to a bed of 
uniform material .  

It is evident that in a two-component bed of par -  
t icles of the same size, the material  with the smal ler  
volume heat capacity will be heated faster  by the gas 
than the material  with the la rger  volume heat capa- 
city. A temperature difference results  between two 
neighboring part icles of the different materials  at the 
same horizontal level, causing a heat flux between 
the particles.  Calculation shows that the temperature  
difference between particles at one horizontal level 
under certain conditions causes a heat flux tens of 
t imes larger  than that due to the temperature  differ-  
ence along the channel formed between the lumps of 
material  through which the gas flows. It has been 
shown by Chukhanov [2], that if the part icles have no 
sharp projections or angularities, the heat flux com- 
ponent due to thermal conduction is negligibly small. 
The radiative component should not be neglected. In 
an exact calculation of radiative heat exchange between 
part icles heated by a gas, a solution of the problem 
may be obtained, because of nonlinearity of the bound- 
ary conditions, only with the aid of electronic com-  
puters. Ear l ier  work by the authors [3] has shownthat, 
to an accuracy sufficient for engineering calculations, 
the law of thermal  interaction between part icles may 
be represented by Newton's law, in which the heat 
t ransfer  coefficient ~rad is computed from the formula 

100 - ] ~  " (1) 

Accurate determination of CII for a bed of spheri-  
cal part icles is both laborious and complex. For  sim- 
plicity it is expedient to assume that channels are 
formed in the bed in the direction of motion of the gas, 
the surface area of the channels being equal to the total 
surface area of the part icles  of both materials .  The 
fraction of the channel surface area allotted to one of 

the materials  will depend on its amount (percentage 
content in the mixture II). Knowing the particle sur -  

face area, we may find the reduced radiation coeffi- 
cient f rom the expression [4] 

C = C o /  (_~2 § r.. .~ r 1 f., ) (2) 
a2 al ft . ' 

where ~2i is the radiation coefficient of part icles of 
the second material  relative to the first.  Its value is 
calculated on the assumption that the channel formed 
by the mixture of part icles is a closed system of the 
two surfaces,  for which 

100--II ~.~ --- sin r.II ~ �9 (3) 
100 100 

Taking into account the above-mentioned mutual 
heat exchange between particles,  and considering a 
bed element of height dH and 1 m 2 in area, we may 
write the following equations to desc r ibe thehea t t r ans -  
fer  between the flowing gas and the fixed two-com- 
ponent bed: 
for the f i rs t  material  

0q ~IQYI-~-~ = a[ l ( tg - - t l )  +arad(t2-- t i )"  (4) 

for the second material  

(p2c2 y,. ~ = a f,_, (tg-- 1.2) - -  arad(t2 -- ti), (5) 

for the gas s t ream 

Otg - - w c y  - ~ = a f , ( t g - - t , )  +a f2( tg - - t2 ) .  (6) 

The boundary conditions of the problem are 

H = 0, lg -- T; 

x = 0, tl = t.., .= 0. (7) 

Equations (4)-(6) hold for a bed whose materials  
have infinitely large thermal conductivity. The valid- 
ity of this assumption is confirmed by the fact that in 
the majori ty of cases  the values of Blot number cal-  
culated for a bed of solid part icles prove to be less 
than 0.5. 

Introducing the new variables 

Y =a[ ,H/wc  T, Z=a[.,.~.'qfic,~', 

and the notation 

n = f.j[.  m = % c, Yv'~,_ c,, y,., A = arad, a [, 
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we t r a n s f o r m  the s y s t e m  of equations (4)-(7) to the 
f o r m  

Oil 
OZ = (tg-- t~) -+- A (t 2 - -  tl), 

OL_ 
mnOZ= ( / g - t " ) -  A n  (L-- t l ) ,  

Otr 0Y = (tg - -  t,) + n (tg--  O 

(8) 

(9) 

(10) 

with the following boundary  condit ions:  

Y =  0, t g=  T, 

Z = 0 ,  t l = t  2 = 0 .  (11) 

We apply a L a p l a c e - C a r s o n  t r a n s f o r m a t i o n  to (8) 
and (9). Then in the t r a n s f o r m s  we have 

pt 1 = tg-- t, 4. A (t 2 --tl) ,  (12) 

pt-~ = m n  (tg-- t~) - -  mA-~ --71), (13) 

f r o m  which ~t and t~ may  be found as functions of ~g: 

(p 4- mn 47 Am) 4- Amn ~g, (14) 
~ = (p 4- A 4-1)(p + mn + A m ) _  A2m 

(p 4- A + 1) mn 4. Am ~ ,  

= ( p 4 - A 4 . 1 ) ( p 4 - m n + A m ) - - A ~ m  
(15) 

Equation (10) in t r a n s f o r m s ,  taking account  of (14) 
and (15), and af te r  a n u m b e r  of t r a n s f o r m a t i o n s ,  takes  
the f o r m  

Otg = ~g (1 + n) - -  
OY 

_ ~ P ( l + m n 2 )  g - m n ( 1 4 . n ) 4 . A m ( 1 4 - n ) 2  (16) 
( p - t - A +  1)(p + mn 4. Am) - -  A2m 

The solut ion of this  equation, sa t i s fy ing  the bound-  
a ry  condit ions,  is 

x exp -- 

tg= Texp[--(1  4.n) Y] x 

p(1 + mn2) 4- mn(14-n) 4- Am(1 -t-n~) y. (17) 
(p + A 4- 1 ) (p + m n  + Am) -- A~rn 

To find the or ig ina l  of (17) it is n e c e s s a r y  to t r a n s -  
f o r m  the denomina to r  of the exponent,  r educ ing  it to 
the following fo rm:  

(p - -  R,) (p --  R=) = (p + A 4. 1)(p + m n +  Am) - -  A2m. (18) 

F r o m  this the roots  of the quadrat ic  equation may  
be found. They a re  

R1,2  ----- - -  l (mn + A m  + A + 1) ,+. 

+_ 1 V (ran § Am 4- A 4- 1) ~ --  4 Imn 4- Am (1 + n) l �9 (19) 

Finally,  (17) may  be t r a n s f o r m e d  to the f o r m  

I a rg= rexp[--(1 4.n)Y]exp P - - R 1  

where  

y + b R Y ] '  (20) 
p - ~ J  

(k 4. R~)(1 4. mn 2) (k + R2)(1 4. mn ~) 
a =  -, b =  - , 

RI - -  R~ R~ - -  R~ 

k = ran(1 4.n) q-Arn(1 4.n)Z-.  (21) 
1 4. mn 2 

Using the fo rmu la  (5) 
Z 

F(p +~,) ~ f (Z)exp(- -XZ)  4. t 's162 (22) 

and the t r ans i t ion  fo rmu la  

exp ([UP) --  Io (2 lJr~21 , (28) 

we obtain the or ig ina l  of the function for  the gas s t r e a m  
t e m p e r a t u r e .  In final fo rm,  the d is t r ibut ion  of gas  
t e m p e r a t u r e  in the bed is de sc r ibed  by the equation 

Texp [-- (1 4. n) YI {exp (/?IZ) I0 ( 2 l :  aYZ) .... t g ~  

__R~t'exp(R~e)10(2 I /aYe  )ds  + exp(R~x)Io(2 | aY.v)-- 

- -  1~ a} ) d s  X f R~ exp (R, s) l 0 (2 ~ ~ 
:J 

X I/~bY/(Z -- x) exp [R.,. (Z -- x)l I1 {2 t:0g (z --- X)) dx}. (24) 

To d e t e r m i n e  the t e m p e r a t u r e  of the f i r s t  m a t e r i a l  
we use (8) and (9). E l imina t ing  the unknown t2, we ob-  
rain an equation for  ca lcu la t ing  t l, 

0)I + t l ( l + A  l + t z ] = ( 1 - t - A  l + n ) t  -' - - -  

the solution of which has  the f o r m  

, 4 0 t g  ,(25) 
n 0Y 

Calcula ted Bed T e m p e r a t u r e s  

Method of calculation 

According to equations (24), 
(26)-(28) 

From the Schumann graphs for a uni- 
form bed of equivalent heat capacity 

T e m -  

p e r a t u r e  

tg 

t, ~ for Z values of 
o I 

100 318 
0.0 151) 
0,0 169 

10I) 315 
0.0 153 

691 
532 
557 

688 
535 
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Z ,l __ y [(l § l +n)  _0'gl 
n tg q- n O-Y J• 

0 

Proceed ing  s imi l a r l y  with (9) and (10), fo r  ca lcu-  
lat ing t2 we obtain the expres s ion  

Z 
A Otg ] 

0 

Determina t ion  of the in tegra l s  in (26) and (27) r e -  
qu i res  a knowledge of tg and 0tg/0Y; tg is de te rmined  
f r o m  (24), and for  0tg/OY we obtain, r e spec t ive ly ,  

Otg --(1 + n ) t g +  Texp[- - (1  + n ) r J  • 
OY 

• exp (R1Z) I1 (2 Vi~rz) - 

Z 
- - R ,  1 /  _y_ S , /~-exp (R,e) I~ 

o 

Z 

-~- I a b  exp (R.,Z) ~ exp I(R, - -  R2) x] • 
0 

X 11 (2  ] / ' ~ - - ~  ) 11 [2 V D Y ( Z ' X )  )dx + 
Z 

' -  exp (R.,Z) i exp [(R, + R2) x] \( 
o 

X lo [2 [~a-~x ) [b [/o (2 ]/-l?Y (Z - -  x) ) 

- - I ,  [.2 [ / ~ - - - x )  ) , / 2 1 / ~ .  1 + 
I 

+ l~ 12 V b Y ( Z ' X ) )  �9 -~  V Y(Z--x)] 

Z 

IV - -  V a~- R1 exp (R,~Z) x 
, 2 - ~ x  x 
0 

• exp(--R.,x)l ,  t2 l / b Y ( Z - - x )  )X 

x 
;g [ i /g-  exp (R, -)1, (2 [/ aYe )dedx - -R texp(R~Z)  "J 

0 

)/,,!2~ {b [[o (2 ~-bY(Z--x) ) - 

-1,  (2 VF?T2-x) )/2 Vbr(z --x)] + 

x 

/ j' cxp (R, e:) Io (2 V aye  ) de dx. 
ip 

(28) 

For  numer ica l  calculat ion in not pa r t i cu l a r ly  im-  
por tant  cases ,  the curve  0tg/0Y = f(Z)  may be con-  
s t ruc ted  f r o m  the graphs  of Schumann et al. [51. 

When one of the ma te r i a I s  is not p resen t  in the bed 
and the re  is no heat  t r a n s f e r  between par t ic les ,  i . e . ,  
when n = 0, A = 0, equations (24) and (26)-(28) t r a n s -  
f o r m  to the well-known equations descr ib ing  heating 
of a single mate r ia l  [6]. 

Analys is  of the or iginal  different ial  equations al-  
lows a m o r e  sharp ly  drawn conclusion r ega rd ing  
pre fe ren t ia l  heating of one of the ma te r i a l s .  In fact,  
fo r  t ime zero,  as follows f r o m  (8) and (9), the r e l a -  
tion 

Ot., Otl f2 fl 
- -  �9 - - r a n = - -  : - -  

OZ OZ g)~ c~ y~ % cl Y1 

is valid, f r o m  which it is seen that the ra te  of heating, 
fo r  example,  of the second mate r ia l ,  will in genera l  
be the g rea t e r ,  the g r e a t e r  the su r face  a rea  t o r t e -  
sponding to unit volume heat  capaci ty  of the mater ia l .  

On the bas i s  of the fo rmulas  obtained, we ca leu-  
lated the heat ing of a bed cons is t ing  of o re  (90% by 
weight) and coke (10%) by a gas at a t e m p e r a t u r e  of 
1000 ~ C. The bed is composed  of n e a r - s p h e r i c a l  p a r -  
t ic les  and with a mean d i ame te r  of 0.005m. The heat  
capac i t ies  of 1 m 3 of o re  and coke are ,  respec t ive ly ,  
1280 and 910 k J / m  3. degree ,  and that  of the gas is 
1.17 k J / m  3. degree.  The gas Velocity, r e f e r r e d  to the 
f r ee  shaft  sect ion,  is 0.5 m / s e e .  The bed initial t e m -  
p e r a t u r e  is 0 ~ C. The ca lcula ted  coeff icient  of con-  
vect ive  heat  t r a n s f e r  turned out to be 87.3 W/m 2 �9 de-  
gree ,  while the coeff ic ient  of heat  t r a n s f e r  between 
pa r t i c l e s  was 84.8 W / m  2- degree .  The resu l t s  of the 
calcula t ion for  Y = 2.0 a re  shown in the table as a 
function of Z. Also given a re  the resu l t s  of ca lcu la -  
t ions aceord ing  to the Schumann graphs  for  a uni form 
bed pos se s s ing  a volume heat  capaci ty  equivalent  to 
the bed of two ma te r i a l s .  F o r  a uni form bed Y0 = 2.53, 
and the re la t ion  between Z and Z0 has the f o r m  Z0 = 
= 1.063 Z. 

Compar i son  of the r e su l t s  obtained shows that  for  
approximate  calcula t ions  it is poss ib le  to r e c o m m e n d  
the following scheme  for  de te rmin ing  the t e m p e r a t u r e s  
tg, t 1 and t 2 in a two-component  bed with the amount  
of one of the components  ~10%: f i rs t ,  the p a r a m e t e r s  
Y0 and Z 0 a re  ca lcula ted  for  a un i fo rm bed of equiva-  
lent heat  capaci ty .  Then f r o m  the g raphs  of [6] the 
quant i t ies  tg and 0tg/0Y are  de termined ,  and the t e m -  
p e r a t u r e s  t 1 and t 2 a re  computed f r o m  equations (26) 
and {27). 

When the content  of the second ma te r i a l  in the bed 
is la rge ,  and in accura t e  ca lcula t ions ,  it is n e c e s s a r y  
to use fo rmu la s  (24), (26), and {27). 

NOTATION 

~0i is the f rac t ion  of mate r ia l  in 1 m 3 of bed; f i  is 
the su r f ace  a rea  of ma te r i a l  in 1 m 3 of bed; II is the 
pe rcen tage  content  of ma te r i a l  in mix ture ;  Cil, Co a re  
the radia t ion coeff ic ients ;  a i is the absorp t iv i ty  of 
pa r t i c l e  ma te r i a l ;  r i  is the ref lee t iv i ty  of pa r t i c l e  m a -  
te r ia l ;  e i, c is the m a s s  heat capac i ty  of ma te r i a l  and 
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gas ;Ti ,  -y are  the bulk density of material  and gas den- 
sity; w is the gas velocity; ti, t are the temperature  of 
material  and gas; T is the mean gas temperature;  
is the coefficient of heat t ransfer  f rom gas to surface 
of materials;  ~rad is the coefficient of mutual heat 
t ransfer  between particles;  H is the bed height; T is 
the time; Y = ~flH/wcT is the bed height parameter ;  
Z = ~J~T/r 1 is the time parameter .  Subscripts 1, 2 
indicate that the parameters  belong to the f i rs t  or to 
the second material,  
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